(精密機械)今井研究室

お問い合わせ
〒274-8501
千葉県船橋市習志野台7-24-1
TEL:047-469-5243
FAX:047-467-9504
E-mail:

現在および過去の研究紹介

最近の研究紹介

論文
  1. 微細突起斜面による液滴の搬送
  2. ゲル型バイオ燃料電池
著書
  1. 形状記憶ポリマーを用いた2方向アクチュエータ

研究業績等(2010-2021,まとめ)

(1)ポリ酸無水物を用いたマイクロニードルの製作(研究テーマ1)
論文
  1. Yuki Nakamura, Satomitsu Imai, Biodegradable neural cell culture sheet made of poly(anhydride) thin film with micro trench structures, IEICE Trans. on Electronics, Vol. E102C, No.2 (2018), pp.164-167.
講演
  1. K. Yasuda, K. Sugisaki, T. Shimoda, Y. Nakamura and S. Imai, Method of Fabrication of Microneedle Using Biodegradable UV Curable Resin Polyanhydride, NMC2019 (JJAP), No. 31P-8-14.
  2. Yuki Nakamura, Satomitsu Imai, Biodegradable neural cell culture sheet made of poly(anhydride) thin film with micro trench structures, IEICE, ISOME2018, S1-7.
(2) 3次元形状のパリレン膜の加工法 (研究テーマ2)
論文
  1. S. Imai, Fabrication of three-dimensional parylene HT diaphragms using D-RIE with a Si substrate, Sensors & Actuators A, 253 (2017), pp.146-155. (http://dx.doi.org/10.1016/j.sna.2016.11.021)
形状記憶ポリマーを用いたアクチュエータ(研究テーマ2)
論文
  1. S. Imai, K. Sakurai, An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs, Precision Engineering (Elsevier), 32 (2013), pp.572-579. (http://dx.doi.org/10.1016/j.precisioneng.2013.01.002)
  2. S. Imai, Operation methods for two-way behavior shape memory polymer actuators without using external stress, IEEJ Trans, 9 (2014), pp.90-96. (http://dx.doi.org/10.1002/tee.21940)
書籍
  1. 今井 (共著),実用化に向けたソフトアクチュエータの開発と応用・制御技術,CNC出版,第7章 (2017), p. 90-99.
講演
  1. 今井,ガラス転移点温度の異なる2種類の形状記憶ポリマーを用いて変形・回復を行うアクチュエータ, 精密工学会2012秋季大会,B16.
  2. 今井,A MEMS actuator using two kinds of shape memory polymers to activate only by heating and cooling, Proc. IWPMA 2012 (International Workshop on Piezoelectric Materials and applications), No.1aPA024.
  3. 今井,薄膜形状記憶ポリマーを用いた梁型MEMSアクチュエータの動作特性,日本機械学会2011年次大会, J161031.
  4. 今井,形状記憶ポリマーを用いたMEMSアクチュエータの構造と加工法,日本機械学会IIP2010情報・知能・精密機器部門講演論文集,B-2.
  5. 今井,櫻井,小島,田邉,形状記憶ポリマーを用いたダイアフラム型アクチュエータの開発,電気学会全国大会,2010.
(3) バイオ燃料電池(研究テーマ3)
論文
  1. Kenta Kuroishi, Toshinari Doi, Kazuki Hoshi, Kazuo Muramatsu, Yasushiro Nishioka, and Satomitsu ImaI, Enzymatic biofuel cell using graphene electrodes with improved interfacial electron transfer, IEICE Trans. on Electronics, Vol. E102C, No.2 (2018), pp.159-163.
  2. Hiroki Fujita, Yasushiro Nishioka, and Satomitsu Imai, Fabrication and performance evaluation of enzyme-type biofuel cell using electrode modified with plural kinds of DET type enzyme by covalent bond, IEICE Trans. on Electronics, Vol. E102C, No.2 (2018), pp.155-158
  3. Kenta Kuroishi, Toshinari Doi, Yusuke Yonaha, Iku Kusajima, Yasushiro Nishioka, and Satomitsu Imai, Enzymatic Biofuel cell using grooved gel of fructose between graphene-coated carbon fiber cloth electrodes, IEICE Trans. on Electronics, Vol. E102C, No.2 (2018), pp.151-154.
講演
  1. T. Ogino , K. Kuroishi and S. Imai, Ascorbic acid biofuel cells using ABTS as an electron transfer mediator, MNC2019 (JJAP), No. 30P-7-16.
  2. T. Ogino , K. Kuroishi and S. Imai, Graphene-coated carbon fiber woven fabric and glucose fuel gel air exposure type biofuel cell, EM-NANO2019 (JJAP), P1-16.
  3. Kenta Kuroishi, Toshinari Doi, Kazuki Hoshi, Kazuo Muramatsu, Yasushiro Nishioka, and Satomitsu ImaI, Enzymatic biofuel cell using graphene electrodes with improved interfacial electron transfer, IEICE, ISOME2018(Saga), P-44.
  4. Kenta Kuroishi, Toshinari Doi, Yusuke Yonaha, Iku Kusajima, Yasushiro Nishioka, and Satomitsu Imai, Enzymatic Biofuel cell using grooved gel of fructose between graphene-coated carbon fiber cloth electrodes, IEICE, ISOME2018, P-32.
  5. Tatsuya Wakebe, Koki Nakajima, Toshinari Doi, Tatsuki Ogino, and Satomitu Imai, Prototyping of flexible and biocompatible enzymatic biofuel cell using gel electrode with conductive layers formed by electrolytic polymerization, JJAP, MNC2018, 16P-11-80.
  6. Hiroki Fujita, Yasushiro Nishioka, and Satomitsu Imai, Fabrication and performance evaluation of enzyme-type biofuel cell using electrode modified with two det-type enzymes by covalent bonding, JJAP, MNC2018, 15P-7-42.
  7. Hiroki Fujita, Yasushiro Nishioka, and Satomitsu Imai, Usefulness and performance comparison of complex enzyme-type biofuel cell using electrode modified with two DET-type enzymes by covalent bonding, Transducer Research Foundation, PowerMEMS2018 (USA, Florida), PT-38j.
  8. T.Doi, k.Hoshi, K.Muramatsu, H.Sumi, Y.Nishioka, and S.Imai, Optimized ascorbic acid fuel cells with graphene-coated carbon fiber cloth, EM-NANO (2017), PA1-2-4.
  9. T.Doi, k.Hoshi, K.Muramatsu, H.Sumi, Y.Nishioka, and S.Imai, Miniaturized ascorbic acid fuel cells with an ion-exchange films and flexible electrodes made of graphene –coated carbon fiber cloth, 232nd ECS Meeting (2017), A01-29.
  10. K.Kuroishi, T.Ishida, T.Doi, Y.Fukushi, S.Imai, and Y.Nishioka, Characterization of glucose biofuel cell based on electrodes modified by carbon nano horns, Power MEMS 2017, PT.2.
(4) 表面微細構造およびリキッドマーブルによる微細液体の搬送(研究テーマ4)
論文
  1. S. Imai, Rolling performance of liquid marbles enhanced by optimizing particles as digital microfluidics actuators, Sensors and Actuators A, Vol.274, (2018) pp.73–84.
  2. S. Imai, S. Oshima, R. Sakuma, Enhancing acceleration of droplets moving on inclined surfaces by decreasing density of projection for microfluidic devices to transport droplets, Sensors and Actuators, A 309 (2020), 111964.
  3. S. Imai, M. Onoda, R. Endo, and T. Okawa, Changing sliding characteristics of a droplet on a slope by the shape and orientation of microtriangular projections for droplet transportation, Sensors and Actuators A(Physical), Elsevier, 336 (2022) 113380.
講演
  1. T. Okawa, K. Fujishiro, S. Oshima, R. Sakuma, and S. Imai, Characteristics of droplet acceleration when sliding on an inclined micro-projection surface with variable viscosity and surface tension, NMC2019(JJAP), No.30P-6-7.
  2. S. Ohshima, R. Sakuma, Y. Nagashima, R. Sugiyama, Y. Hayasaka, and S. Imai, Dynamic characteristics of micro-droplets on inclined surfaces with arrayed micro-pillars to transport droplets in microfluidics devices, JJAP MNC2018.
(5) その他

(a) 薄膜ポリイミドダイアフラム

論文
  1. S. Imai, Y. Shimizu, S. Matsuno, Thin-film polyimide membrane actuators fabricated by etching a substrate by DRIE (Bosch process), JSME, J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.6, No.2 (2012), pp.287-295. (http://dx.doi.org/10.1299/jamdsm.6.287)
  2. Y. Liu, H. Komatsuzaki, Z. Duan, S. Imai, Y. Nishioka, Diffuser micropump structured with extremely flexible diaphragm of 2-μm-thick polyimide film, JSAP, Japanese J. of Applied Physics, Vol.50 (2011), pp.04DK15. (http://dx.doi.org/10.1143/JJAP.50.04DK15)
  3. Y. Liu, H. Komatsuzaki, S. Imai, Y. Nishioka, Planar diffuser/nozzle micropumps with extremely thin polyimide diaphragms, Sensors & Actuators (Elsevier), A 169 (2011), pp.259-265. (http://dx.doi.org/10.1016/j.sna.2011.02.009)
  4. Y. Liu, S. Matsuno, H. Komatsuzaki, S. Imai, Y. Nishioka, Fabrication of a valveless micropump with polyimide membrane, IEEJ, Trans. SM, Vol.130, No.8 (2010), pp.378-382.
講演
  1. 安達,今井,導電性高分子材料を用いたマイクロ通電加熱システムの基礎検討,日本機械学会2013年次大会,J114035.
  2. 栗田,三村,三藤,今井,アルミニウム膜の熱膨張とパラフィンの体積膨張の2つの駆動法によるポリイミドダイアフラムアクチュエータ,日本機械学会2013年次大会,J161023.
  3. S. Mifuji, K. Adachi, T. Tsukioka, S. Imai, Thermal Driving Method and Displacement Properties of a Thin Film Polyimide Diaphragm for a MEMS Actuator, Key Engineering Materials, Vol. 523-524 (2012), pp.563-568 (DOI:10.4028/www.scientific.net/KEM.523-524.563).
  4. 今井,清水,松野,小倉,アルミニウム膜により通電加熱駆動する薄膜ポリイミドダイアフラムアクチュエータの動作特性,2010精密工学会秋季大会,pp.559-560 (I08).
  5. 今井, 清水, 松野, 小倉, 三藤, MEMSアクチュエータ用薄膜ポリイミドダイアフラムの加工法と機械的特性,2010日本機械学会年次大会,予稿集(8), pp.187-188.

(b)磁性流体を用いたアクチュエータ

論文
  1. S. Imai, T. Tsukioka, A magnetic MEMS actuator using a permanent magnet and magnetic fluid enclosed in a cavity sandwiched by polymer diaphragms, Precision Engineering (Elsevier), 38 (2014), pp.548-554. (http://dx.doi.org/10.1016/j.precisioneng.2014.02.003)
講演
  1. Y. Okubo, H. Ota, K. Syoji, S. Imai, A prototype MEMS actuator driven by magnetic fluid enclosed with polyimide diaphragms, Key Engineering Materials, Vol. 523-524 (2012), pp.557-562. (DOI:10.4028/www.scientific.net/KEM.523-524.557).
  2. 月岡,大久保,今井,ポリイミドダイアフラムで封止した磁性流体によって駆動するMEMSアクチュエータの基本特性,日本機械学会2013年次大会,J114011.
  3. 今井,月岡他,磁性流体膜を付けた磁石を内部に封止したポリイミドダイアフラムアクチュエータの基本特性,日本機械学会2014年度年次大会講演論文集,J2230103.

(c) 導電性高分子材料PEDOT:PSSを用いた通電熱変形デバイス

論文
  1. S. Imai, Enhancing electrical conductivity and electrical thermal characteristics of a PEDOT:PSS thin layer by using solvent treatment and Ag nanoparticle solution, Precision Engineering (Elsevier), 42 (2015), pp.143-150. (http://dx.doi.org/10.1016/j.precisioneng.2015.04.009)
  2. S. Imai, K. Adachi, Fundamental characteristics of a MEMS-Diaphragm actuator using a thermal expansion drive composed of a conductive polymer, IEEJ Trans, 10 (2015), pp.101-108. (http://dx.doi.org/10.1002/tee.22075)

(d) マイクロピンセット

論文
  1. S. Imai, T. Ishikawa, et al., Handling characteristics of MEMS-tweezers with contact surface fabricated by Deep-Rie, J. of advanced mechanical design, systems, and manufacturing, JSME/ASME, Vol.4, No.1 (2010), pp.150-157. (http://dx.doi.org/10.1299/jamdsm.4.150)
講演
  1. 今井,石川,佐藤(正),佐藤(弘),田村,マイクロピンセットにおける把持面のICPエッチング加工条件と摩擦特性,日本機械学科年次大会2009,pp.159-160.
外部研究費
科研費

(1) 微細表面構造を持つパリレン膜流路と操作用磁気プローブを組合せた流体デバイス
(課題番号: 16K06195),平成28年度~平成30年度
研究代表者:今井郷充(分担者なし)
概要:μ-TASや医療などの分野において微量な液体を扱う機器の液体搬送方法を検討した.方法は表面微細突起によるロータス効果によるものおよびリキッドマーブルを用いた転がり搬送である.前者では突起の面積比を変化させて液滴の転落角や転落加速度等の動特性を調べ,面積比の最適化を検討した.後者では,リキッドマーブルを構成する粒子の材質や粒径に関する最適化を検討した.(前記研究テーマ4)

(2) 導電性ポリマーの通電加熱で駆動するマイクロフレキシブルアクチュエータ
(課題番号:25420225),平成25年度~平成27年度
研究代表者:今井郷充(分担者なし)
概要: PEDOT/PSSを通電加熱デバイスに応用するために,通電による温度特性を調べた.電気抵抗を下げるため,極性溶媒の混合と銀ナノ粒子の添加を行い,低電圧の印加により数10℃の温度上昇が得られた.光学レンズの焦点変化機構に応用することを検討した.(前記研究テーマ1-(3))

(3) 形状記憶ポリマーをMEMSアクチュエータへ応用するための構造と加工法
(課題番号:22560253),平成22年度~平成24年度
研究代表者:今井郷充(分担者なし)
概要:軽く歪が大きい特徴を有する形状記憶ポリマーをアクチュエータとして使用するための駆動方法を開発した.アクチュエータとして用いるためには2方向の動作が必要であるが,形状記憶効果は1方向性である.そこで加熱・放熱の温度操作で形状記憶効果のみにより2方向性を実現する方法を開発し検証した.(前記研究テーマ3)

(4) ディスク記憶装置の流体振動低減とマイクロ機構の適用に関する基礎研究
(課題番号:16560233),平成16年度~平成17年度
研究代表者:今井郷充(分担者なし)
概要:ヘッドの位置決め振動低減のために,位置決め機構を微小化した場合(マイクロ化含め)に励振力がどのように減少するかを明らかにした.

Page Top